## Speciális számok 0-100-ig

**2009.02.21**

primes graphs digits sums of powers bases Fibonacci geometry repdigits algebra perfect/amicable games/puzzles |

0 is the additive identity.

1 is the multiplicative identity.

2 is the only even prime.

3 is the number of spatial dimensions we live in.

4 is the smallest number of colors sufficient to color all planar maps.

5 is the number of Platonic solids.

6 is the smallest perfect number.

7 is the smallest number of faces of a regular polygon that is not constructible by straightedge and compass.

8 is the largest cube in the Fibonacci sequence.

9 is the maximum number of cubes that are needed to sum to any positive integer.

10 is the base of our number system.

11 is the largest known multiplicative persistence.

12 is the smallest abundant number.

13 is the number of Archimedian solids.

14 is the smallest number n with the property that there are no numbers relatively prime to n smaller numbers.

15 is the smallest composite number n with the property that there is only one group of order n.

16 is the only number of the form x^{y} = y^{x} with x and y different integers.

17 is the number of wallpaper groups.

18 is the only number (other than 0) that is twice the sum of its digits.

19 is the maximum number of 4^{th} powers needed to sum to any number.

20 is the number of rooted trees with 6 vertices.

21 is the smallest number of distinct squares needed to tile a square.

22 is the number of partitions of 8.

23 is the smallest number of integer-sided boxes that tile a box so that no two boxes share a common length.

24 is the largest number divisible by all numbers less than its square root.

25 is the smallest square that can be written as a sum of 2 squares.

26 is the only positive number to be directly between a square and a cube.

27 is the largest number that is the sum of the digits of its cube.

28 is the 2^{nd} perfect number.

29 is the 7^{th} Lucas number.

30 is the largest number with the property that all smaller numbers relatively prime to it are prime.

31 is a Mersenne prime.

32 is the smallest non-trivial 5^{th} power.

33 is the largest number that is not a sum of distinct triangular numbers.

34 is the smallest number with the property that it and its neighbors have the same number of divisors.

35 is the number of hexominoes.

36 is the smallest non-trivial number which is both square and triangular.

37 is the maximum number of 5^{th} powers needed to sum to any number.

38 is the last Roman numeral when written lexicographically.

39 is the smallest number which has 3 different partitions into 3 parts with the same product.

40 is the only number whose letters are in alphabetical order.

41 is a value of n so that x^{2} + x + n takes on prime values for x = 0, 1, 2, ... n-2.

42 is the 5^{th} Catalan number.

43 is the number of sided 7-iamonds.

44 is the number of derangements of 5 items.

45 is a Kaprekar number.

46 is the number of different arrangements (up to rotation and reflection) of 9 non-attacking queens on a 9×9 chessboard.

47 is the largest number of cubes that cannot tile a cube.

48 is the smallest number with 10 divisors.

49 is the smallest number with the property that it and its neighbors are squareful.

50 is the smallest number that can be written as the sum of of 2 squares in 2 ways.

51 is the 6^{th} Motzkin number.

52 is the 5^{th} Bell number.

53 is the only two digit number that is reversed in hexadecimal.

54 is the smallest number that can be written as the sum of 3 squares in 3 ways.

55 is the largest triangular number in the Fibonacci sequence.

56 is the number of reduced 5×5 Latin squares.

57 = 111 in base 7.

58 is the number of commutative semigroups of order 4.

59 is the number of stellations of an icosahedron.

60 is the smallest number divisible by 1 through 6.

61 is the 3^{rd} secant number.

62 is the smallest number that can be written as the sum of of 3 distinct squares in 2 ways.

63 is the number of partially ordered sets of 5 elements.

64 is the smallest number with 7 divisors.

65 is the smallest number that becomes square if its reverse is either added to or subtracted from it.

66 is the number of 8-iamonds.

67 is the smallest number which is palindromic in bases 5 and 6.

68 is the 2-digit string that appears latest in the decimal expansion of π.

69 has the property that n^{2} and n^{3} together contain each digit once.

70 is the smallest weird number.

71 divides the sum of the primes less than it.

72 is the maximum number of spheres that can touch another sphere in a lattice packing in 6 dimensions.

73 is the smallest multi-digit number which is one less than twice its reverse.

74 is the number of different non-Hamiltonian polyhedra with a minimum number of vertices.

75 is the number of orderings of 4 objects with ties allowed.

76 is an automorphic number.

77 is the largest number that cannot be written as a sum of distinct numbers whose reciprocals sum to 1.

78 is the smallest number that can be written as the sum of of 4 distinct squares in 3 ways.

79 is a permutable prime.

80 is the smallest number n where n and n+1 are both products of 4 or more primes.

81 is the square of the sum of its digits.

82 is the number of 6-hexes.

83 is the number of strongly connected digraphs with 4 vertices.

84 is the largest order of a permutation of 14 elements.

85 is the largest n for which 1^{2}+2^{2}+3^{2}+ ... +n^{2} = 1+2+3+ ... +m has a solution.

86 = 222 in base 6.

87 is the sum of the squares of the first 4 primes.

88 is the only number known whose square has no isolated digits.

89 = 8^{1} + 9^{2}

90 is the number of degrees in a right angle.

91 is the smallest pseudoprime in base 3.

92 is the number of different arrangements of 8 non-attacking queens on an 8×8 chessboard.

93 = 333 in base 5.

94 is a Smith number.

95 is the number of planar partitions of 10.

96 is the smallest number that can be written as the difference of 2 squares in 4 ways.

97 is the smallest number with the property that its first 3 multiples contain the digit 9.

98 is the smallest number with the property that its first 5 multiples contain the digit 9.

99 is a Kaprekar number.

100 is the smallest square which is also the sum of 4 consecutive cubes.